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Abstract

A simplified two-dimensional modelling approach to predict the vibration response of mannequin
occupied car seats about a static settling point is demonstrated to be feasible. The goal of the research is to
develop tools for car seat designers. The two-dimensional model, consisting of interconnected masses,
springs and dampers is non-linear due to geometric effects but, under the excitations considered, the model
behaviour is linear. In this approach to modelling, the full system is initially broken down into subsystems,
and experiments are conducted with subsystems to determine approximate values for the stiffness and
damping parameters. This approach is necessary because of the highly non-linear behaviour of foam where
stiffness changes with compression level, and because the simplified model contains more structure than is
necessary to model the relatively simple measured frequency response behaviour, thus requiring a good
initial starting point from which to vary parameters. A detailed study of the effects of changing model
parameters on the natural frequencies, the mode shapes and resonance locations in frequency response
functions is given, highlighting the influence of particular model parameters on features in the seat–
mannequin system’s vibration response. Reasonable qualitative as well as good quantitative agreement
between experimental and simulation frequency response estimates is obtained. In particular, the two-
dimensional motions at the peaks in the frequency response, a combination of up and down and rotational
behaviour is predicted well by the model. Currently research is underway to develop a similar model with
non-linear springs, surface friction effects and viscoelastic elements, that predicts the static settling point, a
necessary step to aid in the subsystem modelling stage in this dynamic modelling approach.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Car seat design is currently mostly done from experience. Both the static and dynamic response
characteristics of occupied seats are important. However, in this paper only the dynamic response
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is focused on. Mostly, the dynamic response of seats is evaluated through tests on occupied seats
where the acceleration is measured at the floor and at the seat base [1–5]. A ratio of the total
weighted acceleration power at the seat base to the weighted acceleration power at the floor can be
used to determine a SEAT value [1, Chapter 9, p. 405]. Car seat manufacturers would like to
enhance their analytical capabilities to be able to predict seat performance prior to prototyping,
and to be able to explore the effect of seat or occupant variation on the overall response. It is
possible to modify the seating foam to produce different stiffness properties, but designers lack the
tools to determine what stiffness variations are desirable for particular occupants. The overall
objective of the research is to generate simplified two-dimensional models that predict, with
reasonable accuracy, seat–occupant system dynamics and can also be used by engineers
developing and troubleshooting automobile seat designs. With this objective, it is important that
the elements in the model can be directly related to seat characteristics, e.g., stiffness of the foam
at various locations in the seat cushion and seat back, and that it be possible to examine the effect
of changes in posture and weight distribution of the occupant. The research reported in this paper
is focused on modelling of seat–occupant vibration around a static settling point. Other research,
not reported here, is focused on predicting the static settling point.

Many car seats consist mainly of moulded polyurethane foam blocks. Foam is a complex
material that is highly non-linear, for example, the stiffness changes as a function of compression
level, initially stiff then becoming soft and finally becoming stiff again as compression increases
[6–10]. Different occupants will produce different levels of compression across the seat, and thus
the stiffness of the seat will be different for different occupants and even for the same occupant
seated in a different position. This variation can have a dramatic effect on the measured vibration
responses. Foam also has a very long memory and it takes many hours for both static and
dynamic steady state conditions to be achieved e.g., Refs. [7,11]. After a period of testing foam
can take over 2 days to recover. If seat evaluation tests are not run until the occupant–seat system
reaches steady state, then the measurements must be made at the same time in the testing
procedure to achieve good repeatability. Foam properties are also sensitive to temperature and
humidity [12,13], so tests should be conducted in controlled environmental conditions, and the
heating of the seat from the occupant will affect the dynamic properties of the foam. All these
properties of foam make it difficult to achieve repeatable results when conducting experiments.

The complexity and non-linear behaviour of the human body, see for example Ref. [1, pp.
367–369, 397], are used as arguments against the use of dummies or mannequins in place of
humans in seats, and certainly the response of the human-in-seat system will differ from the
mannequin-in-seat system [14,15]. Because of the complexities of foam behaviour, it is attractive
to use mannequin-in-seat systems because it is much easier to control experimental parameters,
and make sure that the foam deflection is consistent from test to test. Under these controlled
conditions, it is possible to make consistent comparisons between two seats. This still leaves the
problem of translating the differences in mannequin response into differences in human response
unaddressed. Measurements of the frequency response functions of humans in seats e.g., Refs.
[1,16] and mannequins in seats [17] exhibit very similar features including the number of peaks
and spectral roll-off characteristics. Peak locations differ, but this is expected due to weight
distribution and foam compression levels, clothing, posture, and seat type. A careful comparison
of experimental results where all these features are controlled does not currently appear in the
literature.
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So the experimental approaches, either with humans or with mannequins, have their
drawbacks. The seat designer would like to be able to do much of the seat design prior to
making the seat, thus there is a need for analytical models to replace some of the experimentation.
After prototyping, experimentation will still be required and thus the issues discussed above still
need to be addressed. However, this paper is focused on a methodology that may be used to model
a seat–occupant system undergoing base vibration. For design a model needs to be complex
enough so that components in the model relate to physical properties that can be tuned in the seat
manufacture, and simple enough to facilitate exploring the effects of parameter and component
variation. While finite element models are being developed [18] and have been shown to work well
in predicting static deflections, they currently are not sufficiently developed to predict the dynamic
response accurately. When they are sufficiently sophisticated to do the dynamic predictions well,
they will still be highly computationally intensive and parameter variation studies will be time-
consuming and unwieldy for design. Thus, currently there is a need for simplified vibration models
of seat–occupant systems.

The models described in this paper are two dimensional, planar models based on those of
Nishyama [19–23] with some modifications introduced because of seat behaviour observed during
experiments. The methodology is applied to a mannequin occupied seat system and it is
conceivable that a similar approach may be useful for developing a simplified model of a human
occupied seat system. The measured frequency responses of car-seat occupants are usually
relatively simple with few peaks [16], and some researchers have used as little as two-degree-of-
freedom models to fit to these frequency response functions. Others have used simple mass–
spring–damper models [24–29], but it is often difficult to relate the components of these models
directly to seat characteristics in a way that would be useful in seat design. A comprehensive
review of the one-dimensional biodynamic human body models for this car-seat application is
given by Boileau et al., in Ref. [30]. One of these one-dimensional models, the Suggs model, is used
by Patten and Pang [31] who combined it with Patten’s non-linear model of polyurethane foam
[10] to predict vertical frequency response behaviour of a seat occupant. While illustrating the
well-known non-linear behaviour of the polyurthane foam, (softening with increased amplitude of
excitation) this model does not explain the two-dimensional dynamics experienced by seat
occupants. As a side note, Mansfied and Griffin [32] also showed softening behaviour when
measuring the response of 12 subjects seated on a seat (no seat back), but that behaviour was
attributed to biodynamic effects. They also measured fore–aft response to a vertical excitation, a
confirmation of the need for two-dimensional modelling approaches. The simplified two-
dimensional model in this paper contains the basic components of the seat and the occupant and
models the interaction (foam and soft tissue) between the two with several springs and dampers.
There are geometric non-linearities in the system but the springs and dampers are assumed to be
linear. This type of model is valid about an operating point and within a range of excitation levels.
It has been observed that at the vibration levels typically encountered in highway driving, there is
a high degree of coherence between the seat excitation and the occupant response and the
relationship can be described well by a (linear) frequency response function. This is a seven-
degree-of-freedom planar model and thus to produce a good fit of this model to measured data
that appears much less complex, reasonable starting points for parameter values must be
determined. Simply allowing the parameters to vary from random initializations may lead to
unrealistic parameter values and incorrect deflection shapes. Tregoubov has pointed out a similar
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problem when fitting complex one-dimensional biodynamic models to measured data [33]. A
systematic way of finding good starting values through the use of tests on sub-components of the
system is described and applied to the mannequin occupied seat system.

While the model is termed simplified, its behaviour is quite complex because of the strong
interactions between components. The effects of many parameter variations were studied and
subsets of these tests are reported in this paper. It is clear from the parameter variation studies
that simplistic reasoning based on single-degree-of-freedom behaviour is not sufficient to predict
the effect of changing a particular parameter in this more complicated model. This is a strong
argument for the use of models in seat design to help designers understand the implications of
making changes to the stiffness and damping properties of the foam.

This paper contains a description of what is required to produce a simplified model of a seat–
occupant system that would be useful for a car seat designer to explore the effect of changing seat
characteristics such as stiffness and damping. Whether the occupant be a mannequin or a human,
a process similar to the one described is necessary if one wishes to produce good modelling tools
for design prior to fabrication of prototypes.

2. The model of the seat and mannequin

The modelling approach followed here is along the lines of Nishiyama [20–22]. Based on
observations of a seated mannequin’s response to harmonic excitation near resonance, some
modifications were made to the basic model. The geometric parameters of the model are defined in
Fig. 1a, and the spring, mass, dashpot properties are defined in Fig. 1b. It was observed that at
certain resonant frequencies there was significant seat back motion, whereas in Nishiyama’s
model the seat back was assumed to be rigidly connected to seat base. Thus, a torsional spring (ks)
was added to this connection in the present model. In some other experiments on the subsystem
consisting of the seat cushion and part of the mannequin it was observed (see Section 3.4.1) that
the two springs (k3 and k4) and dampers (c3 and c4), modelling the mannequin and seat cushion
interaction, could not be collocated, as indicated by Nishiyama, and still correctly predict the
natural frequencies and modal deformations of a loaded seat cushion. Some flexibility in the
locations of these spring and damper elements was introduced so that this subsystem experiment-
model mismatch could be eliminated. In the experimental configuration, the lower part of the
mannequin’s back did not usually touch the seat back. However, k2 and c2; which could be viewed
as modelling the lower seat back mannequin interaction, were included in the model so that their
influence could be examined. The variables k1 and c1 model the interaction between the upper
torso of the mannequin and the upper seat back. Similarly, the variables k5 and c5 model the
interaction of the foot with the floor. The only forcing considered here is a vertical base
acceleration ð.zÞ imparted to the bottom of the seat simulating the motion of the rigid seat rails in
an automobile. This is in keeping with the experimental component of the research reported here
wherein the seat–mannequin system is mounted on a single axis hydraulic shaker and excited with
low-frequency random noise. As in Nishiyama’s work, the behaviour of the mannequin’s neck,
hip and knee joints was modelled by torsional dampers (T1; T2 and T3) with appropriate torque–
velocity relationships.
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2.1. Equations of motion

All the springs and dampers, with the exception of the torsional dampers, are assumed to be
linear in the modelling effort. The non-linearities in the system model come from the mannequin
and seat geometry, and from the non-linear torsional dampers in the joints. The seat–mannequin
system has seven-degrees-of-freedom: x; the absolute horizontal displacement of the hip joint;
z; the absolute vertical displacement of the hip joint; Y1; the absolute angular deflection of the
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Fig. 1. Schematic of seven-degree-of-freedom model of the car seat and mannequin system. (a) Geometry and notation

definition, (b) dynamic properties.
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neck; Y2; the absolute angular deflection of the torso; Y3; the absolute angular deflection of the
femur; Y4; the absolute angular deflection of the knee; YS; the absolute angular deflection of the
seat back joint; and .z; the vertical acceleration input to the seat rails. The other parameters of
geometric dimensions, masses, and mass moments of inertia, are given in Table A.1 in
Appendix A.

The equations of motion of the seven-degree-of-freedom model are derived by using the
Lagrangian formulation. The kinetic energy, T ; potential energy, U ; dissipation function, D and
generalized forces, Qr; of the whole system are
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Q1 ¼ 0; Q2 ¼ 0; Q3 ¼ �T1; Q4 ¼ �T2 þ T1; Q5 ¼ �T3 þ T2; Q6 ¼ þT3; Q7 ¼ 0;

where

x1 ¼ xþ ðl2 þ l3ÞcosY2 þ l1 cosY1; z1 ¼ z þ zþ ðl2 þ l3ÞsinY2 þ l1 sinY1;

x2 ¼ xþ l3 cosY2; z2 ¼ z þ zþ l3 sinY2;

x3 ¼ xþ l4 cosY3; z3 ¼ z þ zþ l4 sinY3;

x4 ¼ xþ ðl4 þ l5ÞcosY3 þ l6 cosY4; z4 ¼ z þ zþ ðl4 þ l5Þ sinY3 þ l6 sinY4;

xs ¼ 0:5ll cosYs; zs ¼ z þ 0:5ll sinYs:

ðxi; ziÞ; i ¼ 1; 2, 3, 4, 5 define the locations of the centres of mass of the corresponding mannequin
components. di; i ¼ 1; 2, 3, 4, 5 define the length changes in the elastic elements. Expressions for
the joint torques, Ti; are given in Eq. (4). Substituting Eq. (1) into Lagrange’s equations:
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results in the following set of seven non-linear second order differential equations for the seven
generalized co-ordinates x; z; Y1; Y2; Y3, Y4; and Ys:
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where

A1 ¼ M2 sinY1;A2 ¼ ðM3 þ M6Þ sinY2; A3 ¼ ðM4 þ M7Þ sinY3; A4 ¼ M5 sinY4;

A5 ¼ M2 cosY1
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4 � DðxÞ;
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1 � ðM3 þ M6Þ.z cosY2 � DðY2Þ þ T1 � T2;

G1 ¼ �M9 cosðY3 �Y4Þ; G2 ¼ A3; G3 ¼ B3;

G4 ¼ � M9 sinðY3 �Y4Þ ’Y2
4 � ðM4 þ M7Þ.z cosY3 � DðY3Þ þ T2 � T3;
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2
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4
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2
msll .z cosYs:

The D term in the above expressions is defined in Appendix B, and the mass parameters, Mi; are
M2 ¼ m1l1; M3 ¼ m2l3; M4 ¼ m3l4; M5 ¼ m4l6; M6 ¼ m1ðl2 þ l3Þ; M7 ¼ m4ðl4 þ l5Þ;

M8 ¼ m1l1ðl2 þ l3Þ; M9 ¼ m4l6ðl4 þ l5Þ; M10 ¼ I1 þ m1l21 ; M11 ¼ I2 þ m1ðl2 þ l3Þ
2 þ m2l23 ;

M12 ¼ I3 þ m4ðl4 þ l5Þ
2 þ m3l24 ; M13 ¼ I4 þ m4l26 ; M1 ¼ m1 þ m2 þ m3 þ m4:

As in Nishiyama’s work [20–22], the following equations were used to model the friction
moments associated with each joint:

Ti ¼ Tmax;i tanh
2oi

oi;0

� �
; i ¼ 1; 2; 3; and oi ¼ ’Yi � ’Yiþ1; ð4Þ

where Tmax;1; Tmax;2; Tmax;3 and oi;0 are constants. Nishyama specified the values Tmax;1 ¼ 3:920Nm,
Tmax;2 ¼ 35:280Nm, Tmax;3 ¼ 14:112Nm and oi;0 ¼ 0:349 rad/s, which are most likely not
appropriate for the present mannequin. The first, second and third joints of the mannequin are
the neck, hip and knee, respectively, and the rotational variables in the equations (Yi) are defined
above.
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Eq. (3) was used to simulate the system response for a given vertical base acceleration, .z: The
simulation was programmed using MATLAB. The program was based on the fourth order
Runge–Kutta integration scheme in MATLAB. Equispaced time samples were used so that
frequency response functions, between the base excitation and the motions at various locations on
the body, could be estimated, and compared to experimental results.

2.2. Linearized equations of motion

In general, the response of a non-linear multi-degree-of-freedom system to a random or
deterministic excitation can only be evaluated by numerical simulation. Such an analysis, though
realistic, does not allow the analyst to develop an in-depth understanding of the system dynamics.
The non-linear simulation is also very time consuming because the results of a large number of
simulations are needed to obtain a clear picture of the response dependence on model parameters.
Thus, in order to reduce the analysis time for the dynamic simulations, as well as to calculate the
more familiar modal properties such as the undamped natural frequencies and the mode shapes of
the seat–mannequin system, linear equations of motion were derived. The geometric non-
linearities were simplified by assuming small motions about the specified nominal configurations,
by expanding in a Taylor series, and then retaining only linear terms in the small motion variables.
In this process, the following simplifications were made:

sinY0
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This linearization produces the following set of equations:
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where the terms in the coefficient matrices are defined earlier or are given in Appendix C. The 0 in
the subscript denotes the nominal configuration value of the angles and a primed variable is the
perturbation around the nominal value. For example, Yi0 denotes the initial nominal value of Yi;
and Y0

i denotes the small perturbation around the nominal value.
The linear Eq. (8) depend on (1) the mass and inertia parameters for the mannequin; (2) the

geometric parameters of the model; (3) the initial posture parameters; (4) the spring and damper
constants modelling the car seat bottom and back-cushion; as well as, (5) the parameters defining
the friction torques at the joints in the mannequin. The physical and geometrical parameters, as
given in Appendix A, were available for the mannequin either from the manufacturer or by direct
measurement. Parameter values in the models of the four springs and dampers that represent the
car seat back and seat cushion interacting with the mannequin: k1; k3; k4; k5; c1; c3; c4 and c5 had
to be estimated from experiments which are described in the next section.

2.3. Undamped natural frequencies, deflection shapes, and frequency response functions

Eq. (8) can be written as

M .xþ C ’xþ Kx ¼ .zP ð9Þ

and can be used to calculate the undamped natural frequencies (oi) by determining the
eigenvalues (li) of the matrix M

�1
K and noting that oi ¼ ðliÞ

0:5: The eigenvectors of this matrix
M

�1
K can then be used to generate the mode shapes of the linear undamped model.

When two linear natural modes are close together and damping is significant, the deflection
shape at a peak in the frequency response function is highly influenced by more than one
undamped natural mode of the system. Therefore, in order to correlate the model predictions with
observed motions at certain frequencies, it is useful to determine the response to a sinusoidal
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excitation. This was achieved by assuming that the excitation to the seat base is harmonic:
zðtÞ ¼ expðjotÞ; and finding, from Eq. (8), the amplitude and phase change of the response of each
of the degrees of freedom. By using these results, the deflection of each point on the body was
calculated and the operating deflection shapes were obtained.

The Laplace transform of the linearized equations including the damping terms can be used to
determine the transfer functions between the base excitation and the responses. Taking the
Laplace transform of Eq. (9), and assuming zero initial conditions, yields

XðsÞ ¼ ½Ms2 þ Cs þ K	�1½s2ZðsÞP	; ð10Þ

where XðsÞT is {zðsÞ; xðsÞ; Y1ðsÞ; Y2ðsÞ; Y3ðsÞ; Y4ðsÞ; YsðsÞ}. The frequency response function
relating the base acceleration to the second derivative of the state parameters {z; x; Y1; Y2; Y3;
Y4; Ys} can be found by substituting s ¼ jo into the above equation, which yields the frequency
response function vector,

HðjoÞ ¼ ½�o2Mþ joCþ K	�1f�o2Pg: ð11Þ

In experiments, .Bþ .z; the absolute vertical acceleration at the hip joint, is measured. The
frequency response function relating base acceleration ð.zÞ to absolute vertical acceleration is
simply calculated by adding 1 to the corresponding relative motion frequency response function.

3. Mannequin and seat properties and initial model parameters

3.1. Experimental set-up and measurements

Car-seat foam behaviour is complex and realistic models of the foam relaxation behaviour [6–8]
should include terms with very long time constants. This behaviour requires that care be taken in
establishing repeatable measurement procedures involving time for the system to come to both
static and dynamic steady state before measurements are taken [11,17]. Posture also affects the
response of the seat–mannequin system [19] and hence effort was made to ensure that the
mannequin was positioned in the same position and orientation in the seat. The experimental
configuration for the vibration testing is shown in Fig. 2. Low-frequency Kistler, Type 8303, and
Neuwghent SAA-1000 accelerometers were used to measure the acceleration on the seat rails and
on various parts of the mannequin. While the foam is truly non-linear [9,11], at the low levels of
base acceleration typically measured on car seat rails during highway driving, the relationship
between the seat rail acceleration and the seat–occupant vibration can be modelled with linear
models for a particular seat–mannequin configuration. In Fig. 3 are shown frequency response
functions between the acceleration at the seat rails and the vertical accelerations at the
mannequin’s bottom, back, and knee, as estimated from a test with the seat–mannequin system on
the hydraulic shaker. The excitation at the seat rail was a low-frequency random input in the
frequency range 3–35Hz. The low level of excitation below 3Hz resulted in an input signal to
noise ratio that progressively decreased as the frequencies approached 0Hz; this has the effect of
biasing the frequency response function (input to output cross-spectral density/input power
spectral density) away from the true value, which should be close to 1 at low frequencies.
Therefore, information in the frequency response plots below 3Hz should be ignored. The
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frequency response functions were estimated by using a segment averaging approach, using 2048
data point segments, a Hann window, and 50% overlapping segments [34]. The sample rate was
512 samples per second and thus the frequency resolution was 0.25Hz.

The neck joint of the mannequin used was problematic. During dynamic testing it tended to
become loose and the mean angular orientation moved away from its initial orientation; it is not a
realistic representation of a person’s neck joint. To remove this uncontrollable variability in the
experiment, dynamic tests were performed with the head and neck removed. Modelling was then

Fig. 2. Experimental set-up of the car–seat and mannequin system. The standard mannequin position corresponds to:

yhead ¼ 101; ychest ¼ 201; yseat ¼ 201; yhip ¼ 961; and yknee ¼ 1261; and x0; the horizontal distance from the seat back to

the mannequin bottom location=0.165m.

0 10 20
0

1

2

3

4

m
ag

ni
tu

de

frequency (Hz)
0 10 20

0

1

2

3

4

m
ag

ni
tu

de

frequency (Hz)
0 10 20

0

1

2

3

4

m
ag

ni
tu

de

frequency (Hz)(a) (b) (c)

Fig. 3. Estimated frequency response magnitudes for the seated mannequin with and without head attached. (a) Rail to

bottom, (b) rail to back, and (c) rail to knee frequency response functions. Solid line: with head; dashed line: without

head.

S.K. Kim et al. / Journal of Sound and Vibration 264 (2003) 49–90 59



focused on the response of the seat and headless mannequin system. In Fig. 3 are shown
the measured frequency response functions, both with and without the mannequin’s head
attached.

When the mannequin’s head is removed, the peak response at the bottom, knee, and back are
all seen to increase in magnitude. There is also a slight shift downward in the frequency of the
largest peak response, from about 8Hz to near 7.5Hz. The secondary peak also decreases in its
frequency, from about 6.5 to 5.5Hz, but unlike the largest peak, its amplitude is seen to decrease.
With the head removed, the downward shift in frequency might seem counterintuitive. The
removal of mass is commonly associated with an increase in frequency, since for a single-degree-
of-freedom system, the natural frequency would indeed increase with less mass. However, the
head and neck are not simply a mass element, and the system that they are part of is very
complicated. The head and neck possess certain rotational stiffness and damping properties, and
their effect on the system is difficult to predict.

3.2. Modification of the mannequin model

In order to account for the head removal, the head mass, m1; mass-moment-of-inertia, I1; and
the frictional damping force in the neck joint, T1; were set to zero in the model. This resulted in a
six-degree-of-freedom model which is obtained from Eq. (8) by eliminating the variable Y1: For
this equation also, the linear equations of motion were derived in order to determine the
undamped natural frequencies, mode shapes and frequency response functions. The same
assumptions regarding small motions, as described earlier, were used to obtain the linear
equations of motion.

3.3. Mannequin deflection shapes

In order to more accurately assess the actual deformations at frequencies where peaks occur in
the frequency response function magnitude, and to compare with the response of the analytical
linear as well as non-linear models, a stroboscope was used to visualize the mannequin motion.
The seated mannequin was excited with a single frequency very close to a resonance, and the
strobe light was triggered at a slightly higher frequency. These tests were performed with and
without the mannequin’s head attached. A graphical representation of the observed deflections at
the two resonances are shown in Fig. 4 (mannequin with head) and Fig. 5 (mannequin without
head).

With the head attached, the higher frequency (bounce) mode at 8Hz is indeed seen to contain
mostly vertical motion, with the mannequin mainly sliding up and down along the incline of the
seat back. The shoulders remain in contact with the seat back, but the hip joint moves in a strictly
vertical direction, rather than just sliding in unison with the shoulders. For this reason, a small
angular motion of the torso is also induced. Similarly, the head moves mostly along the plane of
the seat incline, with only a small amount of angular motion. However, the head’s angular motion
is out of phase with the torso’s angular motion. The motion of the knees consists of small
displacement due to the movement of the hips, and the mannequin’s hands simply bounce on the
seat cushion in unison with the hips. The material at the soles of the feet is also seen to compress
slightly against the foot rests as the mannequin bounces.
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The pitch mode at 6.5Hz is characterized by larger angular motion of the mannequin and seat
back in the pitch direction. In this mode, the torso still slides along the seat back and the hips still
move vertically. However, the torso and seat back also move together in the pitch direction.
Accordingly, the head exhibits much larger motion than in the bounce mode, and is again out of
phase with the torso. As before, the knees and arms show little additional motion of their own.

When the head is removed, the amplitudes of the motions and the resonance frequencies
change. However, the character of the motion of the remaining parts of the mannequin at
resonance changes very little: the two primary mannequin deflection shapes, as shown in Fig. 5,
indicate motions that involve the seat back and mannequin rotating together; this is primary
motion at the lower frequency (5.5Hz). This is one of the primary observations that prompted the
addition of a torsional spring, ks; to the model at the junction of the seat back and seat cushion. It
was believed that with this modification to the Nishiyama model, seat back motions could also be
predicted by the simplified system model.

Fig. 4. Deflection shapes at (a) 8.0Hz ‘‘bounce mode’’, and (b) 6.5Hz ‘‘pitch mode’’ for the mannequin with head

attached.

Fig. 5. Deflection shapes at (a) 7.5Hz ‘‘bounce mode’’, and (b) 5.5Hz ‘‘pitch mode’’ for the mannequin without head

attached.
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3.4. Experimental estimation of model parameters

The simplified model being used is shown in Fig. 1(b). The parameters k1; c1; k3; c3; k4; c4; k5; ks

and Js have to be experimentally determined. The parameters k2 and c2 were initially estimated to
be zero, since during the experiments, it was observed that the mannequin did not make contact
with the seat back in the lower back area.

3.4.1. Measurement of k3, c3, k4 and c4

The hips and thighs of the mannequin were separated from the rest of the mannequin and
placed in the seat. The hips and thighs were weighted to reproduce the deflection pattern in the
seat cushion, as if the entire mannequin were seated. A static finite element analysis of the seat–
mannequin system (developed at Johnson Controls, Inc. [18]) was used to determine this mass
distribution on the mannequin’s hips and thighs. Two masses were added to the system, as shown
in Fig. 6. The size and locations of these blocks were varied until the finite element predicted
deflections matched those produced when the full mannequin was in the seat. Earlier, the static
response predictions from the finite element formulation had been shown to agree well with static
deflections and pressure distributions measured in experiments.

After the system had reached a static steady state (this takes approximately 30min because of
long-term memory effects, or creep, in the foam), it was exercised for 10min by exciting the system
with a random base excitation. The partial mannequin system was then given initial conditions
such that it responded in one of its natural modes of vibration. For motion of the system in the
vertical/fore–aft plane, there are two primary natural modes for this system. The lowest frequency
mode consisted of mostly angular motion of the mannequin section (the pitch mode), and the
higher frequency mode consisted of primarily vertical motion (the bounce mode).

The acceleration response time histories were measured at the butt and at the knee, for the two
sets of initial conditions. From these measurements, the vertical and rotational accelerations could
be calculated. These time histories were used to evaluated the parameters k3; k4; c3 and c4 such
that, with given values of the mass, MT ; and the moment of inertia, JT ; the two-degree-of-freedom
model in Fig. 6(a) responds with the same two natural frequencies, mode shapes, and vibration

Fig. 6. (a) First simplified model of mass-loaded partial mannequin seat cushion system with collocated springs and

dampers, and (b) mass–spring–damper model of the system with flexible spring and damper locations.
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decay rates as the experimental system. However, it was found that in the configuration shown in
Fig. 6(a), it was not possible to solve for all the parameters and constrain the system to have the
correct modal deflections. The model shown in Fig. 6(b) was then adopted whereby the spring and
damper number 3 remained collocated, while the spring and damper number 4 were in different
positions. Using this configuration, a model could be estimated that reproduced the motions
measured in the experiment.

The equations of motion, in matrix form, of the two-degrees-of-freedom shown in Fig. 6(b) are

MT 0

0 JT

" #
.x

.y

( )
þ

c3 þ c4 bcc4 � ac3

bcc4 � ac3 b2
cc4 þ a2c3

" #
’x

’y

( )

þ
k3 þ k4 bkk4 � ak3

bkk4 � ak3 b2
kk4 þ a2k3

" #
x

y

( )
¼

0

0

( )
: ð12Þ

These equations of motion contain off-diagonal coupling terms in both the damping and stiffness
matrices. When the mass-loaded seat cushion system (Fig. 6) was displaced vertically the response
was predominantly in the vertical direction, and only a small amount of rotation was observed.
The system could also be excited so that a pitch-only response was observed, however, the
rotation in this case was not exactly around the centre of mass. This clearly indicates the coupling
between the bounce and pitch modes. However, since the intent of this analysis was to obtain
approximate values for k3; k4; c3; and c4; it is reasonable to make the assumption that the two
modes are uncoupled. Thus,

bcc4 � ac3 ¼ 0; bkk4 � ak3 ¼ 0: ð13Þ

The equations of motion (12) then become uncoupled and the first and the second equations
describe the bounce and the pitch modes, respectively. The frequencies (ob and op) and damping
ratios (zb and zp) for both the bounce and pitch modes were estimated from measured data by
using Prony series modelling [35]. Equating these estimates to the natural frequencies and
damping ratios predicted from Eq. (12) gives

c3 þ c4 ¼ 2MTBbob; k3 þ k4 ¼ MTo2
b;

b2
cc4 þ a2c3 ¼ 2JTBpop; b2

kk4 þ a2k3 ¼ JTo2
p: ð14Þ

There are 6 equations and 7 unknowns: a; bc; bk, k3; k4; c3; and c4: The original model had one
set of springs and dampers located at the mannequin’s bottom. It was decided to keep this spring
and damper (c3 and k3) in the same location, and allow the location of c4 and k4 to vary. Thus, the
parameter a was fixed and the rest were solved for. The results were a ¼ 0:139m (defined),
bc ¼ 0:134m, bk ¼ 0:035m, la ¼ a þ bk ¼ 0:174m, lb ¼ a þ bc ¼ 0:273m (Fig. 1), c3 ¼ 151:4Ns/m,
c4 ¼ 157:2N s/m, k3 ¼ 16; 239N/m, and k4 ¼ 64; 548N/m. The free vibration response for both
natural modes of vibration of the partial mannequin and of the estimated model are shown in
Figs. 7(a) and (b).

At first glance a k4 value around four times a k3 value seems surprising. However, this is not
unreasonable if one considers the non-linear behaviour of polyurethane foam [9]. Polyurethane
foam’s stiffness changes with compression. At small compression (0–15%, the bending region) the
foam has high static stiffness. At larger compressions (15–55%, the buckling region) the foam
becomes much softer, but above this the foam becomes highly compacted (the densification
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region) and the stiffness again increases. With the mannequin, the compression under the
tuberosities (close to the location of k3 in the model) is in the mid-range, while under the thighs
(close to the location of k4 in the model) the compression is much smaller and in the first region.
Thus, k3 nearly four times k4 is consistent with foam behaviour.

3.4.2. Measurement of k5

Now consider the stiffness and the damping at the interface between the mannequin’s foot and
the rigid supports, k5 and c5: The mannequin’s shin consists of a metal bar surrounded by foam
rubber. However, since the bar does not extend past the heel, the majority of the flexing in the shin
element occurs at the mannequin’s foot, which is made entirely of the foam rubber. Thus,
compression of the entire shin element is approximately equivalent to compression of the
mannequin’s foot because the rest of the shin is nearly rigid in comparison.

The mannequin’s shin was removed and placed axially in a hydraulic press. A schematic of the
test set-up is shown in Fig. 8(a). Several tests were conducted where the force–displacement
relations for the mannequin’s foot (in the axial direction) were evaluated. In the mannequin–seat
system the foot was resting on a footrest without any additional clamping. The foot remained in
contact with the footrest during the vibration experiments. The compression in the leg during the
experiments was small and in the range used in the static deflection test. The averaged value of the
stiffness, for compressions between 1.27mm (0.0500) and 2.54mm (0.2500), was used to represent
the net stiffness of the mannequin’s foot. The results of the tests are shown in Fig. 8(b). Clearly,
this measurement of the static stiffness will not yield the exact dynamic stiffness, since the foot is
itself made from a foam-type material and hence exhibits viscoelastic behaviour. However, the
results should be sufficient as a starting point for the modelling of mannequin used in this
research. The estimated stiffness at the foot was k5 ¼ 15; 279N/m. The damping value for c5 was
specified as in Nishiyama’s work due to the lack of any other rational basis to determine its value.

3.4.3. Measurement of k1 and c1

The mannequin was loaded into the seat in the standard position, see Fig. 2. Sheets of paper
were taped to the mannequin’s upper back, and to the surface of the seat back. By spray painting
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the paper on the mannequin’s upper back and then allowing it to sink in and rest on the seat back,
an estimate of the contact area between the mannequin’s back and the seat back was obtained.
Then, in order to estimate the approximate force exerted by the seated mannequin on the seat
back, a linear force gage was attached to the mannequin’s shoulders and used to pull the torso
until it just lost contact with the seat back. The force sustained by the foam underneath the upper
back contact area was estimated to be 6.356 gN. In Fig. 9 is shown the experimental set-up that
was used to determine the free response needed to estimate the parameters k1 and c1:

A 6.4 kg metal mass was fabricated, such that its profile matched the contact area of the
mannequin on the seat back. This mass was made such that it was symmetrical along all axes. The
seat back was removed from the base and placed flat on a table. The mass, with an accelerometer
attached, was placed in the appropriate location on the seat back and allowed to settle for 20min.
The mass was given an impulse excitation and the resulting response was recorded. The impulse
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excitations were imparted so as to generate only translational, vertical motion and minimize the
angular motion of the mass. The free vibration time histories were then modelled as a single
damped sine wave, and using the mass, the net stiffness and damping values were estimated to be
k1 ¼ 23; 059N/m and c1 ¼ 70:48N s/m, respectively. The foam was not exercised prior to
transient testing, because that would have required fabrication of a special fixture to attach the
seat back to the shaker and this may change the response characteristics of the seat back.

3.4.4. Measurement of ks

The seat back was removed and weighed. Then, the moment of inertia of the seat back about its
attachment point and the location of its centre of gravity were determined. To determine these
parameters, the seat back was simply hung and allowed to swing freely under gravity as shown in
Fig. 10(a).

For small angular displacements, a linear equation of motion can easily be derived for the
system shown in Fig. 10(a) when hung from each of the two suspension points; the corresponding
natural frequencies of oscillation are given by

o2
1 ¼

msgLG

JG þ msL
2
G

; o2
2 ¼

msgðll � LGÞ

JG þ msðll � LGÞ
2
; ð15Þ

where ms is the total mass of the seat back (4.77 kg), g is the acceleration due to gravity
(9.81m/s2), LG is the distance from the attachment point O to the centre of gravity, L is the total
height of the seat back (0.8m), and JG is the moment of inertia about the centre of gravity. By
using the two measured natural frequencies and Eq. (15), JG and LG were found to be:
LG ¼ 0:40m, and JG ¼ 0:24 kgm2. Finally, the moment of inertia about the attachment point, Js;
was then calculated to be 1.0 kgm2.

In order to determine the stiffness of the torsional spring needed to model the attachment point,
the model shown in Fig. 10(b) was used. From the linearized equation of motion about Y0; the

Fig. 10. (a) Experimental configuration used to measure seat back inertial properties. (b) Simplified model used in

estimating the seat back torsional stiffness.
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natural frequency of the seat back rotation is given by

o2
n ¼ ks=Js: ð16Þ

From tests on the unoccupied seat, the natural frequency of the seat back in the pitch direction
was known to be about 13.5Hz. Using this information along with the moment of inertia Js; it
was possible to solve for the unknown torsional stiffness ks; which was estimated to be 7194.94N/
rad.

3.5. Model parameters based on subsystem parameter estimates

The results of the experiments described above are summarized in the Table 1. In the rest of
paper, this is referred to as the baseline model. In the following section of the paper, the effects on
the frequency response functions of variations around these experimentally determined values for
stiffness and damping will be explored, in addition to investigating the effect of variations in the
damping in the mannequin’s joints.

4. Simulation results

In the following sections, the effects on the seat–mannequin system’s undamped natural
frequencies, linear mode shapes, and the frequency response functions, due to changes in the
stiffness and damping parameters will be examined. Each of these characteristics are affected in a
different way by the changes in the parameters. Therefore to get a full picture of the implication of
changing a parameter, it is important to investigate the changes in all of these characteristics. The
studies described in this section are based on baseline parameter values determined by the
subsystem evaluations, and linear model predictions are used to assess the effects of the parameter
variations.

4.1. The effect of changing the positions of k3, c3, k4 and c4

The following equations are based on the modelling of the seat cushion subsystem, as described
in Section 3.4.1. From these equations, and with reference to Fig. 1, k3; c3; k4 and c4 can be

Table 1

Spring stiffness and damping coefficient values determined experimentally. c5 was chosen to be 80 c1 based on the ratios

used by Nishiyama. These are the baseline model parameters

Spring stiffness (N/m) Damping coefficient (N s/m)

k1 23,059 c1 70.48

k2 0.00 c2 0.00

k3 16,239 c3 151.38

k4 64,648 c4 157.16

k5 15,279 c5 5638.40

ks 7194
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calculated if the distances between the positions of k4 and c4; bk and bc; respectively, and the
position of centre of gravity of the seat bottom are defined (Fig. 6(b)). In the calculations, k3 and
c3 are located in the same position and a ¼ ak3 ¼ ac3 ¼ ð0:139� DÞm. The default location for k3

and c3; their position in Nishiyama’s model, corresponds to D ¼ 0m. Once a is specified the other
parameters can be solved for, as follows:

k3 ¼
JT MTo2

bo
2
p

ða2MTo2
b þ JTo2

pÞ
; k4 ¼

a2MTo2
b

ða2MTo2
b þ JTo2

pÞ
; ð17Þ

c3 ¼
2JT MTobopBbBp

a2MTobBb þ JTopBp

; c4 ¼
2a2JT MTo2

bB
2
b

a2MTobBb þ JTopBp

; ð18Þ

la ¼ a þ
JTo2

p

aMTo2
b

; lb ¼ a þ
JTopBb

aMTobBb

: ð19Þ

Setting D to equal 0, 0.05 and 0.1, and using Eqs. (17)–(19) results in the parameter values shown
in Table 2. The undamped natural frequencies calculated from the linearized model are shown in
Table 3, and the corresponding mode shapes for D ¼ 0:10m are shown in Fig. 11.

From these results, it is apparent that changing the locations of k3; and k4; and adjusting the
parameters to agree with the subsystem modelling, does not have a noticeable effect on the natural
frequencies of the full system. Although the undamped natural frequencies do not match the
experimentally measured resonance frequencies, mode 3 is similar in shape to the deflections of
the mannequin observed in experiments when excited at 5.5Hz, and mode 4 is similar to the
deflections of the mannequin at 7.5Hz. Thus, later results will also use parameter values for
D ¼ 0:10 m:

4.2. The effect of changing k2 in the model

The stiffness k2 was initially not included in the model because the mannequin did not contact
the seat back. However, its exclusion limits the types of motions possible for the torso of the
mannequin, and results in the presence of a very low-frequency mode, not observed in the
experiment. It was therefore decided to explore the effect of including k2: The results of the linear
modal analysis are shown in Table 4 and Fig. 12.

Inclusion of k2 introduces a new fore-and-aft mode (mode five in Table 4), and this is the mode
most affected by variations in k2; its associated natural frequency increasing as k2 increases. The
natural frequency of the up-and-down mode of vibration (mode four in Table 4), is initially

Table 2

Stiffness, damping and location parameters as a function of D

D (m) la (m) k3 (N/m) k4 (N/m) lb (m) c3 (N s/m) c4 (N s/m)

0 0.174 16,239 64,548 0.2729 151.38 157.16

0.05 0.1476 30,722 50,065 0.2981 216.42 92.11

0.1 0.1636 61,532 19,254 0.5162 285.23 23.31
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Table 3

Natural frequencies in Hertz as a function of D

Mode 1 2 3 4 5 6

D ¼ 0:00 o1.0� 10�7 1.92 4.46 5.97 8.91 15.44

D ¼ 0:05 o1.0� 10�7 1.97 4.46 5.96 8.93 15.44

D ¼ 0:10 o1.0� 10�7 1.92 4.46 5.97 8.91 15.44

Mode 1 : f 1 = 0 Hz Mode 2 : f 2 = 1.92 Hz

Mode 3 : f 3 = 4.46 Hz Mode 4 : f 4 = 5.97 Hz

Mode 5 : f 5 = 8.91 Hz Mode 6 : f 6 = 15.44 Hz

Fig. 11. Mode shapes of the headless mannequin motion for D ¼ 0:10m. The first mode shape is a rigid body motion.

Table 4

Natural frequencies in Hertz as a function of changing k2 (k1 ¼ 23; 059N/m)

Mode k2 ¼ 0:0 k2 ¼ 1:0� k1 k2 ¼ 5:0� k1 k2 ¼ 8:0� k1 k2 ¼ 12:0� k1 k2 ¼ 16:0� k1

1 0 — — — — —

2 1.92 1.88 1.89 1.89 1.89 1.89

3 4.46 4.52 4.37 4.39 4.39 4.39

4 6.97 6.30 5.23 5.34 5.39 5.41

5 — 3.44 9.48 11.38 13.06 13.88

6 8.91 8.91 8.81 8.88 8.89 8.89

7 15.44 15.48 15.74 16.08 16.95 18.31
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reduced by the inclusion of k2 and then gradually increases as k2 increases beyond 5 times k1:
Mode 7 is the only other mode significantly affected by the inclusion of k2: In Fig. 12 the variation
in four of the mode shapes as the stiffness k2 is changed is shown. Clearly, the shape of mode 5 is
the most affected, as is the corresponding frequency (Table 4).

4.3. Effect of changing k1

The effects of varying values of k1 on the natural frequencies of the system are shown in
Table 5. In this model k2 is set to be 12 times the baseline value of k1: The most significant
changes in natural frequencies occur for modes five (fore–aft horizontal motion), and
seven (predominantly a seat back motion), with a smaller, but significant, change in the
natural frequency of mode three (seat back and torso rotation). Very interestingly, the natural
frequencies of modes that comprise mainly of up-and-down motion (modes two and four), and
the natural frequency of mode six involving predominantly knee motion are barely affected by
these changes. These mode shapes, not shown, only vary in terms of the amplitude as k1 varies; the
basic shapes do not change. The modal amplitudes most affected are those of the third and fifth
modes.

Original shape

f2=1.88Hz (k2=1.0*k1) 

f2=1.89Hz (k2=5.0*k1) 

f2=1.89Hz (k2=8.0*k1) 

f2=1.89Hz (k2=12.0*k1)

f2=1.89Hz (k2=16.0*k1)

Original shape

f3=4.52Hz (k2=1.0*k1) 

f3=4.37Hz (k2=5.0*k1) 

f3=4.39Hz (k2=8.0*k1) 

f3=4.39Hz (k2=12.0*k1)

f3=4.39Hz (k2=16.0*k1)

Original shape

f4=6.30Hz (k2=1.0*k1) 

f4=5.23Hz (k2=5.0*k1) 

f4=5.34Hz (k2=8.0*k1) 

f4=5.39Hz (k2=12.0*k1)

f4=5.41Hz (k2=16.0*k1)

Original shape

f5=3.44Hz (k2=1.0*k1)

f5=9.48Hz (k2=5.0*k1)

f5=11.38Hz (k2=8.0*k1) 

f5=13.06Hz (k2=12.0*k1)

f5=13.88Hz (k2=16.0*k1)

Fig. 12. The effect on the second, third, fourth and fifth mode shapes of the mannequin due to changes in the stiffness

of spring k2: Shown are k2 ¼ f0; 1; 5; 8; 12; and16g � k1:
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4.4. Effect of changing k3 and k4

4.4.1. Changing springs three and four simultaneously
Next, the effects of changing k3 and k4 were explored. The natural frequencies and the

corresponding mode shapes are shown in Table 6 and in Fig. 13, respectively. In the model the
value of k2 was set at 12 times the baseline value for k1: As k3 and k4 increase together, the natural
frequencies of modes two (vertical motion of knee), and four (vertical motion of torso) increase.
Also, the natural frequencies of modes five, six and seven increase slightly. Mode shape 4 is most
affected by the changes. As can be seen in Fig. 13, although the frequency of mode 2 increases
sixfold the mode shape changes are very small compared to those for mode 4.

4.4.2. Effects of changing k3; and k4 individually

The effects on the natural frequencies from changing k3 alone are shown in Table 7, and those
from changing k4 are shown in Table 8. Mode shape 3 (seat back and torso rotation), as shown in
Fig. 14, changes little but mode shape 4 (up and down motion) changes particularly in the leg
motion. Again the natural frequencies most strongly affected are those associated with the vertical
vibrations, that is modes two and four. The natural frequency of mode four is more sensitive to
changes in k3 than to changes in k4; this is not unexpected as spring three is located at the
mannequin’s bottom, a major contact area between the seat and the mannequin. The opposite is

Table 6

Natural frequencies in Hertz as a function of changing k3 and k4: The baseline values ðD ¼ 0:10 mÞ are:

k3 ¼ 61; 532:0N/m and k4 ¼ 19; 254N/m

Mode 0:1� ðk3; k4Þ 0:5� ðk3; k4Þ 1:0� ðk3; k4Þ 2:0� ðk3; k4Þ 4:0� ðk3; k4Þ

2 0.60 1.34 1.89 2.64 3.64

3 4.39 4.40 4.39 4.40 4.42

4 1.78 3.91 5.39 7.03 10.83

5 12.87 12.95 13.06 13.38 14.54

6 8.58 8.70 8.89 9.47 8.10

7 16.92 16.93 16.95 17.00 17.20

Table 5

Natural frequencies in Hertz as a function of changing k1: The baseline value of k1 is 23,059N/m

Mode k0
1 ¼ 0:5� k1 k0

1 ¼ 0:75� k1 k0
1 ¼ 1:0� k1 k0

1 ¼ 2:0� k1 k0
1 ¼ 4:0� k1

2 1.89 1.89 1.89 1.89 1.89

3 3.74 4.15 4.39 4.83 5.07

4 5.39 5.39 5.39 5.39 5.40

5 11.60 12.45 13.06 14.00 14.33

6 8.89 8.89 8.89 8.89 8.89

7 15.84 16.31 16.95 20.33 26.69
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true for mode two (vertical knee motion), where k4 appears to play a stronger role. Again, spring 4
is located close to the knee and hence this result is expected. The natural frequency of mode six
(predominantly knee motion) is affected nearly equally by changes in k3 or k4:

It is interesting to note that when D was varied, the values of k3 and k4 varied considerably,
see Table 2. However, the variation in that case was done while preserving the frequencies

Original shape

f2=0.60Hz(0.1*(k3,k4))

f2=1.34Hz(0.5*(k3,k4))

f2=1.89Hz(1.0*(k3,k4))

f2=2.64Hz(2.0*(k3,k4))

f2=3.64Hz(4.0*(k3,k4))

Original shape

f3=4.39Hz(0.1*(k3,k4))

f3=4.40Hz(0.5*(k3,k4))

f3=4.39Hz(1.0*(k3,k4))

f3=4.40Hz(2.0*(k3,k4))

f3=4.42Hz(4.0*(k3,k4))

Original shape

f4=1.78Hz(0.1*(k3,k4))

f4=3.91Hz(0.5*(k3,k4))

f4=5.39Hz(1.0*(k3,k4))

f4=7.03Hz(2.0*(k3,k4))

f4=10.83Hz(4.0*(k3,k4))

Original shape

f5=12.87Hz(0.1*(k3,k4))

f5=12.95Hz(0.5*(k3,k4))

f5=13.06Hz(1.0*(k3,k4))

f5=13.38Hz(2.0*(k3,k4))

f5=14.54Hz(4.0*(k3,k4))

Fig. 13. The effect on the second, third, fourth and fifth mode shapes of proportional changes in the stiffnesses k3 and

k4: Changes shown are {0.1, 0.5, 1.0, 2.0, and 4.0}� baseline values of k3 and k4:

Table 7

Natural frequencies in Hertz as a function of changing k3: Baseline values ðD ¼ 0:10 mÞ: k3 ¼ 61; 532:0N/m and

k4 ¼ 19; 254N/m

Mode 0:5� ðk3Þ 0:75� ðk3Þ 1:0� ðk3Þ 2:0� ðk3Þ 4:0� ðk3Þ

2 1.70 1.82 1.89 2.00 2.05

3 4.40 4.39 4.39 4.39 4.39

4 4.30 4.88 5.39 6.91 10.15

5 12.98 13.02 13.06 13.27 13.95

6 8.82 8.85 8.89 9.12 8.08

7 16.94 16.94 16.95 16.98 17.07

S.K. Kim et al. / Journal of Sound and Vibration 264 (2003) 49–9072



of the pitching and bounce modes of the hips-and-thighs on the seat cushion subsystem. If k3 and
k4 are varied independently, the natural frequencies of the subsystem will not necessarily be
preserved, and thus the natural frequencies and modes shapes of the whole system will also
change.

Table 8

Natural frequencies in Hertz as a function of changing k4: Baseline values ðD ¼ 0:10 mÞ are k3 ¼ 61; 532:0N/m and

k4 ¼ 19; 254N/m

Mode 0:5� ðk4Þ 0:75� ðk4Þ 1:0� ðk4Þ 2:0� ðk4Þ 4:0� ðk4Þ

2 1.42 1.69 1.89 2.38 2.79

3 4.39 4.39 4.39 4.40 4.40

4 5.17 5.28 5.39 5.79 6.37

5 13.02 13.04 13.06 13.15 13.39

6 8.75 8.82 8.89 9.19 9.88

7 16.94 16.95 16.95 16.97 17.00

Original shape

f3=4.40Hz (0.5*k3) 

f3=4.39Hz (0.75*k3)

f3=4.39Hz (1.0*k3) 

f3=4.39Hz (2.0*k3) 

f3=4.39Hz (4.0*k3) 

Original shape

f4=4.30Hz (0.5*k3) 

f4=4.88Hz (0.75*k3)

f4=5.39Hz (1.0*k3) 

f4=6.91Hz (2.0*k3) 

f4=10.15Hz (4.0*k3)

Original shape

f3=4.39Hz (0.5*k4) 

f3=4.39Hz (0.75*k4)

f3=4.39Hz (1.0*k4) 

f3=4.40Hz (2.0*k4) 

f3=4.40Hz (4.0*k4) 

Original shape

f4=5.17Hz (0.5*k4) 

f4=5.28Hz (0.75*k4)

f4=5.39Hz (1.0*k4) 

f4=5.79Hz (2.0*k4) 

f4=6.37Hz (4.0*k4) 

Fig. 14. Effects of stiffnesses k3 and k4 on the third and second mode shapes: (a) and (b) variations in the stiffness k3;
(c) and (d) variations in the stiffness k4. In each case {0.5, 0.75, 1.0, 2.0, and 4.0}� baseline values are shown. Baseline

values ðD ¼ 0:10 mÞ are k3 ¼ 61; 532:0N/m and k4 ¼ 19; 254N/m.
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4.5. Effect of varying ks

The value of the seat back torsional stiffness ks estimated from the experiment is 7,194.94
N/rad. The changes in natural frequencies when ks is varied are shown in Table 9. Again, beyond
changes in amplitudes of response, the mode shapes do not change substantially with changing ks;
although the ‘‘synchronization’’ of the torso and the seat back rotation is affected, in that their
amplitudes of motion are not changed equally when ks is changed. The natural frequencies of the
third mode (seat back torso rotation) and the seventh mode (seat back rotation alone) are the only
ones strongly affected by changes in ks; and they increase as ks is increased.

4.6. Effects of changing linear and torsional damping values (ci and T i )

First, the effect of changing all the linear and torsional damping coefficients by the same factors
was examined. This was followed by a study on the effect of changing the damping terms
individually. The coefficients of the friction moments will be denoted by T i Nms/rad and, from
Eq. (7), are equal to 2 Tmax;i=oi;0 where oi;0 ¼ 0:349 rad/s [20]. The frequency response
magnitudes are plotted from 0 to 10Hz. In this range the second, third, fourth and sixth modes
have undamped natural frequencies at 1.89, 4.39, 5.39 and 8.89Hz, respectively. For mode
numbering refer to Table 4, columns 1 and 6. As will be seen in the following results, damping and
the friction in the joints have a strong influence on the number and location of the resonance
peaks in the spectrum. The complexities of the model make it difficult to apply simplistic
explanations such as ‘‘more damping will result in lower resonant frequencies and peaks’’.

4.6.1. Changing the linear and torsional damping coefficients simultaneously
In order to explore the effects of changing the coefficients of each of the viscous dampers, c1 to

c5; and the coefficients of the friction moments at the joints, T2 and T3; Eq. (11) were used to
evaluate the frequency response functions. The stiffness and damping values used in analysis are
shown in Tables 1 and 2, with the exception that k2 is set to 12 k1; and these values correspond
to the case where D ¼ 0:1m. The joint friction coefficients used in this analysis were
T2 ¼ 202:18N s/rad and T3 ¼ 80:87N s/rad. The frequency response magnitudes as a function
of ci and T i are shown in Figs. 15 and 16, respectively. The dark solid lines indicate the frequency
response magnitude of the baseline model ðD ¼ 0:10 mÞ:

Table 9

Natural frequencies in Hertz as a function of changing ks: The baseline value of ks is 7194.94N/rad

Mode 0:1� ðksÞ 0:5� ðksÞ 1:0� ðksÞ 2:0� ðksÞ 4:0� ðksÞ

2 1.92 1.89 1.89 1.89 1.89

3 1.64 3.42 4.39 5.23 5.98

4 5.38 5.38 5.39 5.45 5.36

5 12.00 12.58 13.06 13.50 13.76

6 8.89 8.89 8.89 8.89 8.89

7 15.41 15.99 16.95 19.24 23.71
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The results shown in Fig. 15 are classic illustrations of the effect of damping on resonant
behaviour of dynamic systems. As the viscous damping ratios increase, the peak magnitudes in the
frequency response plots decrease. The results shown in Fig. 16 are surprising because an increase
in the torsional damping, at higher damping values, leads to an increase in the location of the
resonant natural frequency, and also to an increase in amplitude. This is most clearly illustrated in
Figs. 16(b) and (c). This result is a little surprising and may be attributable to a ‘‘locking’’ of the
joints, causing an effective reduction in the number of degrees of freedom in the mannequin
motion. This phenomenon will be explored further in Section 4.6.3. At lower levels of joint
damping, the increase in damping follows the expected trends: lowering of resonant amplitude
and decrease in natural frequency, similar to the trends shown in Fig. 15 when the ci were
increased.

4.6.2. Effect of changing individual linear damping constants c1; c3; c4 and c5
In Fig. 17, the magnitudes of the frequency response functions between the base excitation and

the hip joint vertical vibration are shown. In parts (a) through (d), c1; c2; c3 and c4 are,
respectively, varied individually.
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Fig. 15. The effect of varying viscous damping parameters: ci ¼ ð0:1; 0:25; 0:5; 0:75; 1:0; 2:0; 4:0; 10:0Þ� baseline ci; i ¼
1; 3; 4; 5; on frequency response function magnitudes relating (a) horizontal acceleration, (b) vertical acceleration, (c)

angular acceleration at the hip joint, and (d) angular acceleration at the knee joint, to base acceleration. Graph lines

corresponding to the various scalings of ci are: thin solid (0.1), dashed (0.25), dash–dot (0.5), light dotted (0.75), dark

solid (baseline), light dashed (2.0), dash–dash–dot (4.0), dark dotted (10.0).

S.K. Kim et al. / Journal of Sound and Vibration 264 (2003) 49–90 75



It can be seen from the results that c3 has the strongest effect on the rail to seat bottom vertical
frequency response function. The main peak corresponds to a motion similar to that of mode four
(up and down sliding along the seat back). The smaller peak appears to be related to the seat back
and torso rotational mode (mode three). These modes of response were confirmed by calculating
the operating deflection shapes of the model at these two peak frequencies. Since c3 is the closest
damper to the hip joint, it is not surprising that it has the strongest influence on the ‘‘up-and-
down’’ mode of vibration.

4.6.3. Effect of changing friction moment constants T2 and T3 individually

The effect of changing the friction moments at the joints was also explored and the
corresponding frequency response functions relating the hip joint motion to the base motion are
shown in Fig. 18. The baseline values are taken from Nishiyama [20,21], and are supposed to be
those for a human, not a mannequin. No description of how they were calculated is given. These
parameters are difficult to measure and hence Nishyama’s data was used as a starting point.

The friction coefficient at the knee joint (T3) has a much greater effect on the frequency
response than the friction coefficient at hip joint (T2). When T2 is equal to or larger than its
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Fig. 16. The effect of varying joint damping coefficients: T i ¼ ð0:1; 0:25; 0:5; 0:75; 1:0; 2:0; 4:0; 10:0; 20:0Þ�baseline T i;
i ¼ 2; 3; on the frequency response magnitudes relating: (a) horizontal acceleration, (b) vertical acceleration, (c) angular

acceleration at the hip joint and (d) angular acceleration at the knee joint to base acceleration. Graph lines

corresponding to the various scalings of T i are: thin solid (0.1), dashed (0.25), dash–dot (0.5), light dotted (0.75), dark

solid (baseline), light dashed (2.0), dash–dash–dot (4.0), dark dotted (10.0), thin dark solid (20.0).
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baseline value (202.18N s/rad), increases in T3 lead to increases in the frequency at which the peak
occurs in the frequency response function, as shown in Figs. 18(c) and (d). However, when T2 is
smaller than its baseline value, as T3 increases the peak occurs at a slightly lower frequency, as
shown in Fig. 18(b). As both T2 and T3 increase, the smaller resonant peak in the frequency
response close to 3.64Hz becomes insignificant.

5. Matching the experiment and simulation

As discussed earlier, the two main resonance frequencies of the headless mannequin measured
in experiments are at 5.5 and 7.5Hz. The deflection shape at 5.5Hz is mostly a seat back and torso
in-phase rotation, and the deflection shape at 7.5Hz is mostly up-and-down motion of the hip
joint with the torso sliding up and down the seat. In Fig. 12, the analysis of the system with the
parameters set at the results of the subsystem modelling is shown for varying values of k2: The
experimental deflection shapes are similar to the predicted mode shapes when k2 was set to 12k1:
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Fig. 17. Frequency response function magnitude, relating vertical acceleration of the hip joint to base acceleration, as a

function of changing damping values: ci ¼ ð0:1; 0:25; 0:5; 0:75; 1:0; 2:0; 4:0; 10:0Þ� (baseline ci). (a) c1 varies, (b) c2 varies,

(c) c3 varies, and (d) c4 varies. Graph line types corresponding to the various scalings of ci are: thin solid (0.1), dashed

(0.25), dash–dot (0.5), dotted (0.75), dark solid (baseline), light dashed (2.0), dash–dash–dot (4.0), dark dotted (10.0).
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However, neither the third and the fourth undamped natural frequencies (f3 ¼ 4:39Hz and
f4 ¼ 5:39Hz, respectively) nor the resonance locations (3.64 and 5.53Hz) in the model’s frequency
response functions (Fig. 16) correspond to the resonance frequencies observed in the experiment.

In order to match the experiment and simulation, the resonance (peak response) frequencies
need to be increased. Based on the results of the parameter variation studies, several guidelines for
matching the observed and predicted frequency response functions were identified.

* To increase the resonance frequency of the up-and-down motion (mode 4) from 5.53Hz in
simulation to the 7.5Hz observed in experiment, values of k3 and k4 could be increased
(Tables 6–8). Also, T3 could also be increased above 4 times its baseline value (Figs. 16 and 18).
The most significant effects will come from increasing k3 (Table 7).

* Since ks has the strongest effect on seat back and torso mode (Table 9), the value of ks could be
increased to increase seat back and torso resonance from 3.64Hz in the simulation to 5.5Hz in
the experiment. Increasing k1 will also increase the undamped natural frequency associated
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Fig. 18. The effect of changing joint friction moment coefficients: T i ¼ ð0:1; 0:25; 0:5; 0:75; 1:0; 2:0; 5:0;
10:0; 20:0Þ� baseline T i; on frequency response magnitudes relating vertical acceleration of the hip joint to base

acceleration: (a) T2 varies and T3 ¼ 80:87Nms/rad, (b) T3 varies and T2 ¼ 20:22Nm s/rad, (c) T3 varies and

T2 ¼ 202:18Nms/rad, and (d) T3 varies and T2 ¼ 4043:54Nms/rad. Graph lines corresponding to the various

scalings of T i are: thin solid (0.1), dashed (0.25), dash–dot (0.5), light dotted (0.75), dark solid (baseline), light dashed

(2.0), dash–dash–dot (5.0), dark dotted (10.0), thin dark solid (20.0).
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with this motion (Table 5). Lowering T2 and T3 to below 0.25 times their baseline values will
also increase the frequency location of this resonance in the spectrum (Fig. 16(c)).

* To reduce the amplitudes of up-and-down motion at resonance, c3 and c4 can be increased, as
shown in Figs. 17(b) and (c). In certain regions T2 and T3 can be increased to reduce the
amplitude, but in other regions an increase in these parameters can lead to an increase in the
peak amplitude (Figs. 16(b) and (c)).

* To increase the amplitudes of the seat back torso resonance, c3 and c4 can be decreased.
Reducing T2 and T3 can lead to dramatic increases in amplitude, and increasing T2 and T3

well above their baseline values can also lead to an increased resonance amplitude (Figs. 16(b)
and (c)).

* By using these guidelines, a new set of values was found for the stiffness and damping
parameters, and also for the torsional dampers at the joints. These ratios and values are shown
in Table 10. The undamped natural frequencies and the corresponding mode shapes from the
linear modal analysis are shown in Fig. 19.

By using these parameters, good agreement was obtained between the model frequency
response and the measured frequency response, as shown in Fig. 20. The solid line is the estimate
generated from measurements. Below 5Hz the measurements were noisy due to low energy
excitation into the system at these frequencies. The signal-to-noise ratios are progressively worse
as the frequency approaches 0Hz. Since the H1 frequency response function estimate was used
[34], at low signal-to-noise ratios of the input, the frequency response function magnitude will be
biased towards zero, and will approach zero as the signal to noise ratio becomes very small, which
was the case here at very low frequencies. Thus, frequency response estimates below 3Hz are very
poor and are not plotted. The lighter line is the frequency response derived from the linear
analysis (Eq. (10)). The crosses, which lie on the top of the lighter line, are the results of
performing a full non-linear dynamic analysis (Eq. (3)) of the system responding to a random
input, similar to that used in the experiment, and then generating the H1 frequency response
estimate.

The characteristics of the input to the seat rails were as follows. First, the input was a base
acceleration with a r.m.s. value of 0.006 gm/s2. Second, the frequency range of the input was
1–50Hz. The input spectrum was shaped by using filters to approximate the actual input power
spectral density measured on the shaker table. The total analysis time was just over 64 s with a

Table 10

New ‘adjusted’ stiffness and damping parameters for the system

Stiffness of each

spring

Values

(N/(m or rad))

Damping coefficient Values

(N s/m)

Friction moment Values

(N s/rad)

k0
1 ¼ 2:65� k1 61,106.4 c01 ¼ 0:25� c1 17.62 T 0

2 ¼ 20� T2 4043.55

k2 ¼ 12� k1 276,708.0 c2 0.00 T 0
3 ¼ 1:5� T3 121.31

k0
3 ¼ 2:05� k3 126,140.6 c03 ¼ 2:1� c3 598.98

k0
4 ¼ 2:05� k4 39,470.7 c04 ¼ 2:1� c4 48.95

k5 15,279.0 c5 ¼ 20� c1 1409.6

k0
s ¼ 3:0� ks 21,584.8
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sample rate of 2048 samples per second. In the spectral density calculations, the data was split into
50% overlapping, 4 s segments, and windowed with a Hann window.

From the results one can conclude that the linearization produces an accurate model at these
input levels. The up-and-down resonance at 7.5Hz is well predicted by the model. There is some
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Fig. 20. Frequency responses relating vertical acceleration ð.zþ .zÞ of hip joint to base acceleration ð.zÞ: Dark solid line:

experimental results, light solid line: linear model frequency response function, line with crosses: estimate from

simulation using full non-linear dynamic analysis.

Mode 2 : f 2 = 2.68 Hz Mode 3 : f 3 = 7.38 Hz

Mode 4 : f 4 = 7.1 Hz Mode 5 : f 5 = 14.52 Hz

Fig. 19. The undamped natural frequencies and corresponding mode shapes for four of the modes derived from the

model with parameters as shown in Table 10.
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mismatch at the lower seat back torso resonance at 5.5Hz. Some of these differences could be
explained from the measurements where perhaps some of the rotational motion, in addition to
vertical motion, was being picked up by the accelerometer on the mannequin’s bottom. Because of
the large influence of the torsional damping coefficients on the resonance (peak response)
location, the operating deflection shapes were generated at the two resonance frequencies, rather
than relying on a modal analysis of the undamped system. These are shown in Fig. 21. These agree
well with those observed in the experiment (Fig. 5).

The main resonance of the seat–mannequin system was at a higher frequency than is typically
found with humans occupying car seats. It was of interest to see if by modifying the mannequin
characteristics to more closely match that of a human whether it was possible to shift the
resonance of the system significantly. The data for a 50th percentile male are shown in Table A.1
[36]. The frequency response function magnitudes shown in Fig. 22 are for the seat–mannequin
system and for a seat–50th percentile male system. The mass moments of inertia were based on the
mannequin but scaled to take into account the mass difference between the mannequin and
the 50th percentile male. The dimensions of the 50th percentile male model were adjusted to be the
same as the mannequin. It is known that different weight distributions will produce different
compressions in the foam which will affect the stiffness, and foam is much stiffer at low (o10%)

Original shape
Driving freq. 5.5 Hz

Original shape
Driving freq. 7.5 Hz

Fig. 21. Operating deflection shapes predicted by the linearized analytical model at the two main resonance (peak

response) locations: (a) 5.5Hz, and (b) 7.5Hz. Model parameters are shown in Table 10.

Fig. 22. Frequency responses relating vertical acceleration of hip joint to base acceleration of a seat–mannequin and a

seat–50th percentile male system. Dark solid line: seat–mannequin system, dashed line: seat–50th percentile male

system, dotted line: seat–50th percentile male system with k3 and k4 reduced by half, light solid line: seat–50th percentile

male system with k4 reduced by half and k3 ¼ k4:
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and very high (>50%) compression levels than it is at medium levels of compression. With some
foams the stiffness in the middle range can be very low. The three plots associated with the 50th
percentile male are for three settings of the stiffnesses that represent the effect of the seat cushion
(k3 and k4). Clearly, it can be seen that both the mass distribution and the seat stiffness play a
large role in where the resonances occur and also the strength and relationship of the two peaks in
this part of the frequency response. This figure clearly illustrates that two-dimensional models
with this level of complexity are capable of predicting the types of frequency response behaviour
observed in experiments with both mannequins and humans.

6. Summary and conclusions

A simplified two-dimensional modelling approach for occupied car seats was demonstrated to
be feasible. The model consisted of interconnected masses, springs and dampers. Because foam is
a highly non-linear material and the stiffness and damping properties are dependent on
compression level, the mannequin–seat system was initially broken down into subsystems and
experiments conducted to determine approximate values for model parameters. A short study of
the effect of changing model parameters on natural frequencies, mode shapes and resonance
locations in frequency response functions was described, highlighting the influence of particular
model parameters on features in the mannequin’s vibration response. Good agreement between
experimental and simulation frequency response estimates was obtained both in terms of locations
of resonances and system deflection shapes at resonance, indicating that this is a feasible method
of modelling seated occupants.

The subsystem modelling is an important step to finding approximate values for the parameters
in the model. While this was performed for a specific mannequin–seat system, the approach is
sufficiently general to be applicable to other seat–mannequin systems. Reproducing the static
deformation of the foam prior to the dynamic testing is important as the stiffness is strongly
dependent on compression level. The subsystem modelling did not include estimation of the
torsional damping in the mannequin’s joints. The model response was sensitive to the torsional
damping in the joints, and therefore methods to estimate these parameters experimentally should be
established. Most of the model parameters had to be changed from the subsystem model
predictions to produce good agreement with the experimentally determined frequency response
function. The parameter tuning was done by using the parameter study results to guide the choice
of parameters to effect the modification of a particular frequency response feature. While this
extensive exploration gave much insight into the influence of model parameters, it would be
desirable to automate this procedure, using the subsystem parameter estimates as the starting point.

Whether the deficiency in the subsystem-based model predictions is due to the influence of
addition parameters in the full system that are unaccounted for in the model, e.g., surface friction
and shearing of the foam as the mannequin slides along the seat back, or is due to deficient
subsystem modelling needs to be investigated. The foam modelling is certainly deficient because it
is well known that foam is a viscoelastic material. The influence of viscoelastic behaviour has been
observed in experiments on car-seat foam conducted by the authors [11,17]. One extension of the
seat model would be the inclusion of discrete viscoelastic elements. It is important to know
whether it is essential to model these additional effects explicitly. Certainly, how their presence
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affects component parameters in the model should be evaluated and will be addressed in future
research. Currently research is also underway to develop similar models with non-linear springs,
surface friction effects and viscoelastic elements, that predicts the static settling point, a necessary
step to aid in the subsystem modelling stage in this dynamic model approach. Understanding
these issues is essential to developing links between fundamental material properties and seat–
mannequin model parameters, one step in the optimization of seat design for vibration comfort.
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Appendix A. Seat–mannequin system model parameters

The parameters of geometric dimensions, masses, and mass moments of inertia, are given in
Table A.1.

Appendix B. Formulae for calculating the parameters in the non-linear model

Following is a list of the formulae used in the calculation of the elastic and damping terms on
the right-hand side of the Eq. (8).

A5: DðxÞ ¼
X5

i¼1

kidi
@di

@x
þ
X5

i¼1

ci
’di
@’di

@’x
; B5: DðzÞ ¼

X5

i¼1

kidi
@di

@z
þ

X5

i¼1

ci
’di
@’di

@’z
;

D4: DðY1Þ ¼
X5

i¼1

kidi

@di

@Y1
þ

X5

i¼1

ci
’di

@’di

@ ’Y1

; E4: DðY2Þ ¼
X5

i¼1

kidi

@di

@Y2
þ

X5

i¼1

ci
’di

@’di

@ ’Y2

;

G4: DðY3Þ ¼
X5

i¼1

kidi

@di

@Y3
þ

X5

i¼1

ci
’di

@’di

@ ’Y3

; H4: DðY4Þ ¼
X5

i¼1

kidi

@di

@Y4
þ

X5

i¼1

ci
’di

@’di

@ ’Y4

;

S2: DðYsÞ ¼
X5

i¼1

kidi
@di

@Ys

þ
X5

i¼1

ci
’di

@’di

@ ’Ys

;
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where the definitions of the geometric parameters li; i ¼ 1; 2y7, ll ; lk; lm; la; lb; lp; lq; and lo; are
given in Fig. 1, and the deflections di; i ¼ 1; 2, 3, 4 are defined below:

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðx; z;Y2;YsÞ

p
� d10;

f1 ¼ x2 þ z2 þ 2ðlk � lmÞfx cosY2 þ z sinY2g � 2lkfx cosYs þ z sinYsg

� 2lkðlk � lmÞfcosYs cosY2 þ sinYs sinY2g þ l2k þ ðlk � lmÞ
2;

’f1 ¼ x’xþ z’zþ ðlk � lmÞ ’x cosY2 � x sinY2 � ’Y2 þ ’z sinY2 þ z cosY2 � ’Y2

� �
� lk ’x cosYs � x sinYs � ’Ys þ ’z sinYs þ z cosYs � ’Ys

� �
� lkðlk � lmÞ

� cosYs sinY2 � ’Ys þ sinYs cosY2 � ’Y2 � cosYs sinY2 � ’Y2 þ sinYs cosY2 � ’Ys

� �
;

Table A.1

Parameter values for the seat–mannequin system and a 50% percentile male

Parameters Seat–mannequin system

used in experiments

50% percentile male

Mass of head (m) 3.988 4.536

Mass of torso, neck, pelvis and arms (m2) 34.138 50.298

Mass of femur (m) 17.844 11.975

Mass of shin (m) 7.948 11.340

Total mass (M1 ¼ m1 þ m2 þ m3 þ m4) 63.918 78.149

Mass moment of inertia of head (I1) 0.02195 0.02497

Mass moment of inertia of torso, neck, pelvis and arms

(I2)

1.39277 2.05207

Mass moment of inertia of femur (I3) 0.33520 0.22495

Mass moment of inertia of shin (I4) 0.19732 0.28153

Length of head (l1) 0.1207 0.1727

Length of torso and pelvis (l2 þ l3) 0.6223 0.6248

Length of femur (l4 þ l5) 0.5334 0.5283

Length of shin (l6 þ l7) 0.4572 0.4927

Initial angle of head (Y10) 100.0 100.0

Initial angle of torso (Y20) 110.0 110.0

Initial angle of femur (Y30) 14.0 14.0

Initial angle of shin (Y40) 320.0 320.0

Angle of foot (b) 50.0 50.0

Angle of seat (Ys0) 110.0 110.0

Distance from seat corner to base of foot rest (lo) 0.9378 0.9378

Distance from the base of foot rest to heel (lp) 0.1397 0.1397

Distance from seat rail to seat cushion (lq) 0.163 0.163

Distance from seat back joint to position of k1 (lk) 0.578 0.578

Distance from seat back joint to position of k2 (lm) 0.076 0.076

Length of seat-back (ll) 0.800 0.800

Z dir. initial position of hip joint (z0) 0.110 0.110

X dir. initial position of hip joint (x0) 0.165 0.165

Units: length (m), angle (degrees), mass (kg), mass moment of inertia (kgm2).
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d10 ¼ x20 þ z20 þ 2ðlk � lmÞ x0 cosY20 þ z0 sinY20 � 2lk cosðY20 �Ys0Þf g
�
� 2lk x0 cosYs0 þ z0 sinYs0f g þ l2k þ ðlk � lmÞ

2
�1=2

;

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðx; z;YsÞ

p
� d20;

f2 ¼ x2 þ z2 � 2lmfz sinYs þ x cosYsg þ l2m;

’f2 ¼ x’xþ z’z� lm ’x cosYs � x sinYs � ’Ys þ ’z sinYs þ z cosYs � ’Ys

� �
;

d20 ¼ x20 þ z20 � 2lm z0 sinYs0 þ x0 cosYs0f g þ l2m
� �1=2

;

d3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f3 x; z;Y3ð Þ

p
� d30; lD ¼

D
cosY30

;

f3 ¼ x2 þ z2 þ 2lD x cosY3 þ z sinY3f g � 2ðDþ x0Þ xþ lD cosY3f g þ l2D þ ðDþ x0Þ
2;

’f3 ¼ x’xþ z’zþ lDf’x cosY3 � x sinY3 � ’Y3 þ ’z sinY3 þ z cosY3 � ’Y3g

� ðDþ x0Þ’xþ lDðDþ x0ÞsinY3 � ’Y3;

d30 ¼ ½z0 þ lD sinY30	;

d4k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f4kðx; z;Y3Þ

p
� d4k0; ln1 ¼

la þ D
cosY30

; lj1 ¼ x0 þ Dþ la;

f4k ¼ x2 þ z2 þ 2ln1fx cosY3 þ z sinY3g � 2lj1ðx� ln1 cosY3Þ þ l2n1 þ l2j1;

’f4k ¼ x’xþ z’zþ ln1f’x cosY3 � x sinY3 � ’Y3 þ ’z sinY3 þ z cosY3 � ’Y3g

� lj1ð’xþ ln1 sinY3 � ’Y3Þ;

d4k0 ¼ ½ðx0 þ ln1 cosY30 � lj1Þ
2 þ ðz0 þ ln1 sinY30Þ	1=2;

d4c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f4cðx; z;Y3Þ

p
� d4c0; ln2 ¼

lb þ D
cosY30

; lj2 ¼ x0 þ Dþ lb;

f4c ¼ x2 þ z2 þ 2ln2fx cosY3 þ z sinY3g � 2 lj2ðx� ln2 cosY3Þ þ l2n2 þ l2j2;

’f4c ¼ x ’xþ z ’zþ ln2f’x cosY3 � x sinY3 �Y3 þ ’z sinY3 þ z cosY3 � ’Y3g

� lj2ð’xþ ln2 sinY3 � ’Y3Þ;

d4c0 ¼ ½ðx0 þ ln2 cosY30 � lj2Þ
2 þ ðz0 þ ln2 sinY30Þ	1=2;

d5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f5ðx; z;Y3;Y4Þ

p
� d50; lc ¼ lo þ lp cos b; ld ¼ lq � lp sin b;

f5 ¼ x2 þ z2 þ 2ðl4 þ l5Þ ðx� lcÞ cosY3 þ ðzþ ld Þ sinY3f g

þ 2ðl6 þ l7Þ ðx� lcÞ cosY4 þ ðzþ ldÞ sinY4f g þ 2ðl4 þ l5Þðl6 þ l7Þ cosðY3 �Y4Þ

þ 2ldz� 2lcxþ l2c þ l2d þ l4 þ l5ð Þ2þ l6 þ l7ð Þ2;
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’f5 ¼ x’xþ z’zþ ðl4 þ l5Þf’x cosY3 � ðx� lcÞ sinY3 � ’Y3 þ ’z sinY3 þ ðzþ ldÞ cosY3 � ’Y3g

þ ðl6 þ l7Þf’x cosY4 � ðx� lcÞ sinY4 � ’Y4 þ ’z sinY4 þ ðzþ ldÞ cosY4 � ’Y4g

þ ld ’z� lc ’xþ ðl4 þ l5Þðl6 þ l7Þ sinðY3 �Y4Þ � ð ’Y4 � ’Y3Þ
� �

;

d50 ¼ ½fx0 þ ðl4 þ l5Þ cosY30 þ ðl6 þ l7Þ cosY40 � lcg
2

þ z0 þ ðl4 þ l5ÞsinY30 þ ðl6 þ l7Þ sinY40 þ ldf g2	1=2:

Here dio; i ¼ 1; 2, 3, 4, 5 represent the nominal values of these variables.

Appendix C. Formulae for calculating the parameters in the stiffness and damping matrices of the

linear model

C.1. Stiffness matrix elements of Eq. (8)

This matrix is symmetric and thus only the elements in the upper triangular part are given
below.

K411 ¼
k1

d210
K2

11 þ
k2

d220
ðx0 � lm cosYs0Þ

2 þ
k4

d2k40
K2

41 þ
k5

d250
ðx0 þ K51Þ

2;

K412 ¼
k1

d210
K11K12 þ

k2

d220
ðx0 � lm cosYs0Þðz0 � lm sinYs0Þ

þ
k4

d2k40
K41K42 þ

k5

d250
ðx0 þ K51Þðz0 þ K52Þ;

K413 ¼ 0; K414 ¼
k1

d210
K11K13 ðlk � lmÞ; K415 ¼

k4

d2k40
K41K43 þ

k5K54

d250
ðx0 þ K51Þ;

K416 ¼
k5K55

d250
ðx0 þ K51Þ;

K417 ¼
k1K11K14

d210
þ

k2lmðx0 � lm cosYs0Þfx0 sinYs0 � B0 cosYs0g

d220
;

K422 ¼
k1

d210
K2

12 þ
k2

d220
ðz0 � lm sinYs0Þ

2 þ k3 þ
k4

d2k40
K2

42 þ
k5

d250
ðz0 þ K52Þ

2;

K423 ¼ 0; K424 ¼
k1

d210
K12K13ðlk � lmÞ;

K425 ¼
k3lnj31KY3

d30
þ

k4

d2k40
K42K43 þ

k5K54

d250
ðz0 þ K52Þ;
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K426 ¼
k5K55

d250
ðz0 þ K52Þ; K427 ¼

k1K12K14

d210
þ

k2lmðB0 � lm sinYs0Þfx0 sinYs0 � B0 cosYs0g

d220
;

K43i ¼ 0 ði ¼ 1;y; 7Þ;

K444 ¼
k1

d210
K2

13ðlk � lmÞ
2; K445 ¼ 0; K446 ¼ 0; K447 ¼

k1ðlk � lmÞK13K14

d210
;

K455 ¼
k3K2

Y3

d230
þ

k4

d2k40
K2

43 þ
k5

d250
K2

54; K456 ¼
k5

d250
K54K55;

K457 ¼ 0; K466 ¼
k5

d250
K2

55; K467 ¼ 0;

K477 ¼
k1K2

14

d210
þ ks þ

k2l2mfx0 sinYs0 � B0 cosYs0g
2

d220
:

C.2. Damping matrix elements of Eq. (8)

This matrix is also symmetric and thus only the elements in the upper triangular part are given
below. The subscript notation, when including a 0 indicates the initial configuration value of the
variable, about which the expansions were performed.

C411 ¼
c1

d210
K2

11 þ
c2

d220
ðx0 � lm cosYs0Þ

2 þ
c4

d2c40
C2

41 þ
c5

d250
ðx0 þ K51Þ

2;

C412 ¼
c1

d210
K11K12 þ

c2

d220
ðx0 � lm cosYs0Þðz0 � lm sinYs0Þ

þ
c4

d2c40
C41C42 þ

c5

d250
ðx0 þ K51Þðz0 þ K52Þ;

C413 ¼ 0; C414 ¼
c1

d210
K11K13ðlk � lmÞ; C415 ¼

c4

d2c40
C41C43 þ

c5K54

d250
ðx0 þ K51Þ;

C416 ¼
c5K55

d250
ðx0 þ K51Þ; C417 ¼

c1K11K14

d210
þ

c2lmðx0 � lm cosYs0Þfx0 sinYs0 � B0 cosYs0g

d220
;

C422 ¼
c1

d210
K2

12 þ
c2

d220
ðz0 � lm sinYs0Þ

2 þ c3 þ
c4

d2c40
C2

42 þ
c5

d250
ðz0 þ K52Þ

2; C423 ¼ 0;

C424 ¼
c1

d210
K12K13ðlk � lmÞ; C425 ¼

c3lnj31KY3

d30
þ

c4

d2c40
C42C43 þ

c5K54

d250
ðz0 þ K52Þ;

C426 ¼
c5K55

d250
ðz0 þ K52Þ; C427 ¼

c1K12K14

d210
þ

c2lmðB0 � lm sinYs0Þfx0 sinYs0 � B0 cosYs0g

d220
;
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C433 ¼ T1max
¼ 22:4642; C434 ¼ �T1max

¼ �22:4642; C43i ¼ 0 ði ¼ 5; 6; 7Þ

C444 ¼
c1

d210
K2

13ðlk � lmÞ
2 þ T1max

þ T2max
; C445 ¼ �T2max

;

C446 ¼ 0; C447 ¼
c1ðlk � lmÞK13K14

d210
;

C455 ¼
c3K2

Y3

d230
þ

c4

d2c40
C2

43 þ
k5

d250
K2

54 þ T2max
þ T3max

; C456 ¼
c5

d250
K54K55 � T3max

; C457 ¼ 0;

C466 ¼
c5

d250
K2

55 þ T3max
; C467 ¼ 0;

C477 ¼
c1 K2

14

d210
þ

c2 l2m x0 sinYs0 � B0 cosYs0f g2

d220
:

C.3. Parameters used in stiffness and damping elements

The parameters not defined in Appendices C.1 and C.2 are listed below.

KY3
¼ D B0 þ

D
cosY30

sinY30

� �
;

K11 ¼ x0 þ ðlk � lmÞ cosY20 � lk cosYs0; K12 ¼ z0 þ ðlk � lmÞsinY20 � lk sinYs0;

K13 ¼ z0 cosY20 � x0 sinY20 � lk sinðYs0 �Y20Þ;

K41 ¼ ln1 cosY30 þ x0 � lj1; K42 ¼ ln1 sinY30 þ z0;

K43 ¼ ln1 lj1 sinY30 þ z0 cosY30 � x0 sinY30

� �
;

C41 ¼ ln2 cosY30 þ x0 � lj2; C42 ¼ ln2 sinY30 þ z0;

C43 ¼ ln2flj2 sinY30 þ z0 cosY30 � x0 sinY30g;

K51 ¼ ðl4 þ l5Þ cosY30 þ ðl6 þ l7Þ cosY40 � lc;

K52 ¼ ðl4 þ l5Þ sinY30 þ ðl6 þ l7Þ sinY40 þ ld ;

K54 ¼ ðl4 þ l5Þfðz0 þ K52Þ cosY30 � ðx0 þ K51Þ sinY30g;

K55 ¼ ðl6 þ l7Þ ðz0 þ K52Þ cosY40 � ðx0 þ K51Þ sinY40f g:
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